Application of Artificial Intelligence (AI) and Machine Learning (ML) in Health Applications for HIV/AIDS Prevention: A Systematic Review

Authors

  • Aulia Dwi Yuliana Sinergi Sehat Indonesia
  • Nurholis Majid Research and Development Department, Sinergi Sehat Indonesia, Yogyakarta
  • Ahnav Bil Auvaq Research and Development Department, Sinergi Sehat Indonesia, Yogyakarta
  • Eksa Satya Pertiwi Research and Development Department, Sinergi Sehat Indonesia, Yogyakarta
  • Eksa Satya Pertiwi Research and Development Department, Sinergi Sehat Indonesia, Yogyakarta
  • Jessica Febe Immanuela Research and Development Department, Sinergi Sehat Indonesia, Yogyakarta

DOI:

https://doi.org/10.26911/theijmed.2025.10.01.04

Abstract

Background: HIV/AIDS has become a global problem that continues to increase every year, despite various prevention efforts such as health education and HIV screening. To overcome this challenge, innovative strategies are needed by integrating artificial intelligence and digital technology to develop more effective HIV/AIDS prevention interventions.    

Method: The research method used was a desk review or systematic review related to artificial intelligence and machine learning in HIV prevention and PrEP use. The databases used are PubMed, Science Direct, and Google Scholar with study criteria published in 2015-2024. The keywords used are “Artificial Intelligence and Machine Learning and HIV”,“Artificial Intelligence and HIV”, “Machine Learning and HIV, ‘Artificial Intelligence and HIV’ and Systematic Review”, “Artificial Intelligence and Machine Learning in HIV/AIDS Prevention”.                     

Results: Based on the results of the review, AI and ML have proven to be effective in improving HIV/AIDS prevention programs. Benefits include the use of digital data to detect at-risk groups, virtual reality programs to help with status disclosure, chatbots for education, and data analysis to understand the causes of transmission and how to prevent it. An HIV prevention chatbot that can aid in prevention messaging, encourage self-testing, and personalized treatment strategies would be transformational in a low-resource setting.

Conclusion: AI and ML approaches can be an important solution in improving the effectiveness of HIV/AIDS prevention programs, although they are still at an early stage and face various challenges. Future research should identify the potential of AI and ML to be developed and implemented more widely.          

Keywords:

Artificial Intelligence, AI, Machine Learning, ML, HIV/AIDS

References

Andigema AS, Cyrielle NNT, Koudoum PL, Vladimir AJ (2023). AI in the mana-gement of hiv: case study cameroon. Int J Virol. 10(1):1–4. Doi: 10.23937-/2469-567x/1510089.

Ardiana DPY, Joni IDMAB, and Udayana IPAED (2020). Mobile based chatbot application for HIV/AIDS counseling using artificial intelligence markup language approach. J. Phys. Conf. Ser. 1469(1). https://doi.-org/10.1088/1742-6596/1469/1/012-041.

Braddock WRT, Ocasio MA, Comulada WS, Mandani Jan, Fernandez MI (2023) Increasing participation in a telePrEP program for sexual and gender minority adolescents and young adults in Louisiana: protocol for an SMS text messaging-based chatbot. JMIR Res Protoc. 12. https://doi.org/10.2196/42983.

Cheah MH, Gan YN, Altice FL, Wickersham JA, Shrestha R, Salleh NAM, Ng KS, et al. (2024). Testing the feasibility and acceptability of using an artificial intelligence chatbot to promote hiv testing and pre-exposure prophylaxis in Malaysia: mixed methods study. JMIR Hum Factors. 11:e52055. https://doi.-org/10.2196/52055.

Duque VG, Perdomo HAG (2021). Syste-matic review and meta-analysis: which pitfalls to avoid during this process. Int Braz J Urol. 47(5):1037–1041. https://doi.org/10.1590/S1677-5538.IBJU.2020.0746.

He J, Li J, Jiang S, Cheng W, Jiang J, Xu Y, Yang J, et al. (2022). Application of machine learning algorithms in pre-dicting HIV infection among men who have sex with men: model development and validation. Front. Public Health. 10. Doi: 10.3389/-fpubh.2022.967681.

Heerden AV, Bosman S, Swendeman D, Comulada WS (2023). Chatbots for HIV prevention and care: a narrative review. Curr HIV/AIDS Rep. 20(6): 481-486. https://doi.org/10.10-07/s11904-023-00681-x.

Holt E (2024). AI-assisted HIV case finding in Ukraine. Lancet Microbe. 5(7): 631. https://doi.org/10.1016/s2666-5247-(24)00077-6.

Jaiteh M, Phalane E, Shiferaw YA, Voet KA, Mafuya RNP (2024). utilization of machine learning algorithms for the strengthening of HIV testing: a systematic review. Algorithms. 17(8): 1–24. https://doi.org/10.3390/-a17080362.

Kamitani E, Mizuno Y, Khalil GM, Viguerie A, DeLuca JB, Mishra N (2024). Improving HIV pre-exposure pro-phylaxis uptake with artificial intelli-gence and automation: a systematic review. AIDS. 38(10): 1560–1569. https://doi.org/10.1097/QAD.0000-000000003935.

Kemenkes RI (2024). Laporan eksekutif perkembangan hiv aids dan penyakit infeksi menular seksual (PIMS) tahun 2023. Kemenkes RI. 7:1–15. Available at: https://hivaids-pims indonesia.-or.id/download?kategori=Laporan Triwulan.

Marcus JL, Sewell WC, Balzer LB, Krako-wer DS (2020). Artificial intelligence and machine learning for hiv pre-vention: emerging approaches to ending the epidemic. Curr HIV/AIDS Rep. 17(3): 171–179. Doi: 10.1007/s11904-020-00490-6.

Massa P, Ferraz DA, Magno L, Silva AP, Greco M, Dourado I, Grangeiro A (2023). A transgender chatbot (amanda selfie) to create pre-exposure prophylaxis demand among adolescents in Brazil: assessment of acceptability, functionality, usability, and results. J Med Internet Res. 25:1-13. https://doi.org/10.2196/41881.

Mutai CK, McSharry PE, Ngaruye I, Musa-banganj E (2021). Use of machine learning techniques to identify HIV predictors for screening in sub-Saha-ran Africa. BMC Med Res Methodol. 21(1): 1–11. Doi: 10.1186/s12874-021-01346-2.

Nasuuna EM, Nanyeenya N, Kibirige D, Izudi J, Chikwari CD, Kalyesubula R, Castelnuovo B, et al. (2024). Preva-lence of chronic kidney disease among young people living with HIV in Sub Saharan Africa: a systematic review and meta-analysis. PLoS One. 19 (11):1–18. https://doi.-org/10.1371/journal.pone.0301954.

Page MJ, McKenzie JE, Bossuyt MP, Boutron I, Hoffman TC, Mulrow CD, Shamseer L, et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic re-views. Br Med J. 372. https://doi.-org/10.1136/bmj.n71.

Peter M, Aldo DA, Ong CS (2021). Mathe-matics of machine learning. Available at: https://mml-book.com.

Sheikh H, Prins C, Schrijvers E (2023). Mission AI: the new system techno-logy. Springer. Doi: 10.1007/978-3-031-21448-6.

Siddiqui AA, Alshammary F, Mulla M, Al-Zubaidi SM, Afroze E, Amin J, Amin S, et al. (2021) ‘revalence of dental caries in Pakistan: a systematic review and meta-analysis. BMC Oral Health. 21(1): 1–13. Doi: 10.1186/-s12903-021-01802-x.

Singhal K, Azizi S, Tu T, Mahdavi SS, Wei J, Chung HW, Scales N, et al. (2023). Large language models encode clinical knowledge. Nature. 620(7972):172–180. Doi: 10.1038/-s41586-023-06291-2.

WHO (2024a). HIV and AIDS. Available at: https://www.who.int/news-room/fact-sheets/detail/hiv-aids?ga-d_s-ource=1&gclid=CjwKCAiAxqC6BhBcEiwAlXp45yh8007JegZZ2JmKw-Orrui-_x5Lzw6kScAg8vbu17XewU-WGXmC98BoC8tkQAvD_BwE.

WHO (2024b). Global HIV Programme. Available at: https://www.who.int/-teams/global-hiv-hepatitis-and-stis-programmes/hiv/prevention.

Xiang Y, Du J, Fujimoto K, Li F, Schneider J, Tao C (2023). Application of arti-ficial intelligence and machine learn-ing for HIV prevention interventions. Lancet. 9(1): e54–e62. https://doi.-org/10.1016/S2352-3018(21)00247-2.

Downloads

Published

2025-01-10

Issue

Section

Articles