The Effectiveness of Ethanol Extract Chayote (Sechium Edule (Jacq.) Swartz) Fraction and Juice on Pancreatic β-Cell Diameter of Male White Rats Wistar Strain with Type 2 Diabetes Mellitus

Authors

  • Sanggam Bangun Hutagalung Department of Anatomical Pathology, Faculty of Medicine, Universitas Methodist Indonesia, Medan
  • Jekson Martiar Siahaan Department of Physiology, Faculty of Medicine, Universitas Methodist Indonesia, Medan
  • Hendrika Andriana Silitonga Department of Histology, Faculty of Medicine, Universitas Methodist Indonesia, Medan

Abstract

Background: Diabetes Mellitus is character­rized by metabolic disturbances due to pro­longed hyperglycemia, causing oxidative stress, which destroys pancreatic β cells. Adjuvant therapy that has antihyperglycemic effective­ness and is required to improve the diameter of pancreatic beta cells, one of which comes from Sechium edule (Jacq.) Swartz has poten­tial as an antihyperglycemic, antioxidant, anti­apop­tosis, cardioprotective, insulin resistance. This study aimed to examine the effectiveness of ethanol extract, Chayote (Sechium Edule (Jacq.) Swartz) fraction, and juice on the pancreatic β-cell diameter of white male rats Wistar strain with type 2 diabetes mellitus.

Subjects and Method: This was a rando­mized controlled trial. Sample was Rattus novergius sp. 54 tails. The dependent variable was the diameter of the pancreatic β cells. The independent variables were ethanol extract, Sechium edule (Jacq.) Swartz fraction and juice, at a dose of 50 mg/kg BW, 100 mg/ kg BW, 150 mg/kg BW. The data were analyzed by the ANOVA test.

Results: The group of mice induced by Strep­tozotocin 50 mg/kg BW + nicotinamide (120 mg/ kg BW) + HFD and obtained ethanol extract of chayote fruit 150 mg/ kg BW, orally, had the highest pancreatic β cell diameter com­pared to the other groups (Mean= 284.03; SD= 5.15).

Conclusion: Sechium edule (Jacq.) Swartz has potential as an anti-apoptosis that can inhibit pancreatic β cell damage

Keywords: pancreatic β cells, anti-apoptosis

Correspondence: Sanggam Bangun Hutagalung. Department of Anatomical Pathology, Faculty of Medicine, Universitas Methodist Indonesia, Medan. Jl. Setia Budi Pasar II Tj. Sari, Medan 20132, North Sumatera. Email: sanggam1973@­gmail.com.

Indonesian Journal of Medicine (2021), 06(03): 239-245

https://doi.org/10.26911/theijmed.­2021.06.03.01

 

References

Jörns A, Wedekind D, Jähne J, Lenzen S (2020). Pancreas pathology of latent autoimmune diabetes in adults (LADA) in patients and in a LADA rat model compared to type 1 diabetes mellitus. Diabetes. 69(4):624-633. doi:10.2337/db19-0865.

Lartey NL, Asare-Anane H, Ofori EK, Antwi S, Asiedu-Larbie J, Ayertey F, Okine LKN (2020). Antidiabetic activity of aqueous stem bark extract of Annickia polycarpa in alloxan-induced diabetic mice. J Traditional Complement Med. In press. doi:10.1016/j.jtcme.2020.-02.001.

Marchetti P, Suleiman M, De Luca C, Baronti W, Bosi E, Marselli L (2020). A direct look at the dysfunction and pathology of the β cells in human type 2 diabetes. Seminars in Cell & Developmental Biology.103:83-93. https://doi.org/10.1016/j.semcdb.2020.04.005.

Marchetti P, Ferrannini E (2015). Beta cell mass and function in human type 2 diabetes, in International Textbook of Diabetes Mellitus, eds DeFronzo R. A., Ferrannini E., Keen H., Zimmet P. New York: John Wiley & Sons, Ltd.

Siahaan JM (2017).Effect of antihipoglycemic Sechium edule Jacq.Swartz. Etanol extract on histopathologic changes in hyperglycemic Mus musculus L. Indones J Med. 2(2): 86-93 https://doi.org/10.26911/theijmed.2017.02.02.02.

Iftikhar A, Aslam B, Iftikhar M, Majeed W, Batool M, Zahoor B, Latif I (2020). Effect of Caesalpinia bonduc polyphenol extract on alloxan-induced diabetic rats in attenuating hyper-glycemia by upregulating insulin secretion and inhibiting JNK signaling pathway. Oxid Med Cell Longev. 2020: 9020219. https://doi.org/10.-1155/2020/9020219.

Jezek P, Jaburek M, Plecita Hlavata L (2018). Contribution of oxidative stress and impaired biogenesis of pancreatic β-cells to type 2 diabetes. Antioxid Redox Signal. 31(10):722-751. https://doi.org/10.1089/ars.201-8.7656.

Lee MS, Chyau CC, Wang CP, Wang TH, Chen JH, Lin HH (2020). Flavonoids identification and pancreatic beta-cell protective effect of lotus seedpod. Antioxidants (Basel).9(8):658. https-://doi.org/10.3390/antiox9080658.

Siahaan JM, Julianto E, Silitonga HA (2019). The effects of ethanol extract and ethyl acetatefractionation of Sechium Edule Jacq. Swartz on triglyceride levelsin male rats with type 2 diabetes mellitus. Indones J Med. 4(4): 371-375. https://doi.org/10.269-11/theijmed.2019.04.04.10.

Siahaan JM (2020). Impressi ekstrak etanol buah labu siam: Tinjauan kritis ekstrak etanol buah labu siam dan stress oksidatif tikus putih model diabetes tipe 2 (Chayote fruit ethanol extract impression: a critical review of chayote fruit ethanol extract and the oxidative stress of white rats, a type 2 diabetes model). Tasikmalaya: Edu Publisher.

Saleh FR (2016). Antibacterial activity of seeds of Iraqi dates. JBioInnov. 5(2): 313-318.https://www.jbino.com/do-cs/Issue02_17_2016.pdf

Da’i M, Wardani RZ, Saifudin A (2020). Isolation and identification of active antioxidant compounds from ethyl acetate fraction of ethanol extract of meniran herb (Phyllantus Niruri L.). Eur Asian Journal of Bio Sciences. 14(2): 5461-5467.

Dizaye KF, Aziz RS (2019). Antihypergly-cemic effect of the alkaloids extracted from Adiantum capillus in diabetic rats. Ann Coll Med Mosul. 41(2):148-157. http://dx.doi.org/10.33899/mm-ed.2020.164157.

Zhang L, Wei G, Liu Y, Zu Y, Gai Q, YangL (2015). Antihyperglycemic and antioxidant activities of total alkaloids from Catharanthus roseus in streptozotocin-induced diabetic rats.Journal of Forestry Research. 27(1): 167–174. https://doi.org/10.1007/s11676-015-0112-2.

Tian X, Zhang Y, Li h, Li Y, Wang N, Zhang W, Ma B (2020). Palmatine ameliorates high fat diet induced impaired glucose tolerance. Biol Res. 53(1):39. https://doi.org/10.1186/s40659-020-00308-0.

Du T, Yang L, Xu X, Shi X, Xu X, Lu J, Lv J, et al., (2019). Vincamine as a GPR40 agonist improves glucose homeostasis in type 2 diabetic mice. Journal of Endocrinology.240(2): 195-214. https://doi.org/10.1530/joe-18-0432.

Cheng FR, Cui HX, Fang JL, Yuan K, Guo Y (2019). Ameliorative effect and mechanism of the purified anthraquinoneglycoside preparation from rheum palmatum l. on type 2 diabetes mellitus. Molecules. 24(8): 1454.https://doi.org/10.3390/molecules24081454.

Kittl M, Beyreis M, Tumurkhuu M, Fürst J, Helm K, Pitschmann A, Gaisberger M, Glasl S, Ritter M, Jakab M (2016). Quercetin stimulates insulin secretion and reduces the viability of rat INS-1 beta-cells. Cell Physiol Biochem. 39 (1): 278–293. https://doi.org/10.115-9/000445623.

Chen F, Chen Y, Kang X, Zhou Z, Zhang Z, Liu D (2012). Anti-apoptotic function and mechanism of ginseng saponins in rattus pancreatic β-Cells. Biol Pharm Bull. 35(9): 1568–1573. https://doi.org/10.1248/bpb.b12-00461.

Kunyanga CN, Imungi JK, Okoth M, Momanyi, C, Biesalsk, HK, Vadivel V (2011). Antioxidant and antidiabetic properties of condensed tannins in acetonic extract of selected raw and processed indigenous food ingredients from Kenya.Journal of Food Science.

(4): C560–C567.https://doi.org/10.1111/j.1750-3841.2011.02-116.x.

Sieniawska E (2015). Activities of tannins from in vitro studies to clinical trials. Natural Product Communications. 10 (11):1934578X1501001. https://doi.org/10.1177 1934578X1501001118.

Barkey ARB, Hussein SA, Alm-Eldeen AAE, Hafez YA, Mohamed AM (2017). Saponins and their potential role in diabetes mellitus. Diabetes Manag. 7(1): 148–158. https://www.openaccessjournals.com/articles/saponins-and-their-potential-role-in-diabetes-mellitus.pdf.

Lü H, Jian T, Ding X, Zuo Y, Chen J, Li, W, Li X, Chen J (2019). Trapa natans pericarp extract ameliorates hyperglycemia and hyperlipidemia in type 2 diabetic mice. Revista Brasileira de Farmacognosia. 29(5): 631-636. https://doi.org/10.1016/j.bjp.2019.04.011

Downloads

Published

2021-09-09

Issue

Section

Articles