Meta-Analysis the Effectiveness of Speech Therapy on Phonation Improvement in People Diagnosed with Parkinson's Disease

Anitasari Kartika Putri1, Hanung Prasetya2, Bhisma Murti1

1) Masters Program in Public Health, Universitas Sebelas Maret
2) Study Program of Acupuncture, Health Polytechnics, Ministry of Health, Surakarta

ABSTRACT

Background: Parkinson's disease (PD) is a complex, progressive neurodegenerative disease characterized by tremor, rigidity, slow movement, and postural instability. Phonation disturbances are the most frequently observed speech characteristics in PD patients. The purpose of this study was to estimate the effectiveness of speech therapy interventions for phonation improvement in people with a diagnosis of Parkinson's disease.

Subjects and Method: This study is a meta-analysis of a number of Randomized Controlled Trial study designs. The articles used in this study were obtained from several databases including PubMed, Google Scholar, and Springer Link. Article search was carried out by considering the eligibility criteria defined using the PICO model. The population in the study were people with a diagnosis of Parkinson's disease with intervention in the form of speech therapy intervention, comparison, namely no speech therapy intervention, outcome in the form of phonation. The keywords to search for articles are as follows: “Intervention Speech Therapy” OR “Speech Therapy” OR “Phonation” OR “Voice” OR “Parkinson Disease” AND “Randomized Controlled Trial” OR “RCT”. The articles included in this study are full text articles with a Randomized Controlled Trial (RCT) study design. Articles are collected using PRISMA flow diagrams. Articles were analyzed using the Review Manager 5.3 application.

Results: A total of 7 articles were reviewed in this study from the United States, North America, and Austria. The total sample size in this study was 213 subjects. A meta-analysis showed that speech therapy was effective for improving phonation in people with a diagnosis of Parkinson's disease (SMD = 2.52; 95% CI = 1.79 to 3.24; p<0.001).

Conclusion: Speech therapy is effective for improving phonation in people with a diagnosis of Parkinson's disease.

Keywords: speech therapy, phonation, voice, parkinson disease.

Correspondence:
Anitasari Kartika Putri. Masters Program in Public Health. Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Jawa Tengah, Indonesia. Email: anitaakartika@gmail.com Mobile: 0857-27-77-7217

Sitasi:

Indonesian Journal of Medicine is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

BACKGROUND

Parkinson's disease (PD) is a complex, progressive neurodegenerative disease characterized by tremors, rigidity, slow movements, and postural instability (Kouli et al., 2018). PD is the second most common neurodegenerative disease after Alzheimer's disease with a prevalence of approximately 0.5–1% among ages 65–69 years, increasing to 1–3% among persons aged 80 years and
over. It is estimated that the prevalence and incidence of PD will increase by more than 30% by 2030 (Kouli et al., 2018). Phonation disorders are the most frequently observed speech characteristics in PD patients (Dash-tipour et al., 2018).

According to Saffarian (2019) 70% to 90% of patients with PD exhibit some type of speech disorder. The majority of people with PD have speech dysfunction which negatively affects communication (Church, 2021).

Speech therapy presents a variety of therapeutic methods to improve communication in PD patients. One method in the treatment of voice disorders in PD is known as the Lee Silverman Voice Treatment (LSVT). The aim of this method focuses on improving vocal loudness as well as one of the most widely used speech interventions in hypokinetic dysarthria associated with PD (Pu et al., 2021).

SUBJECTS AND METHOD

1. Study Design
This research is a systematic review and meta-analysis. The articles used in this study were obtained from several databases including PubMed, Google Scholar, and Springer Link. The keywords to search for articles are as follows: “Intervention Speech Therapy” OR “Speech Therapy” AND “Phonation” OR “Voice” AND “Parkinson Disease” AND “Randomized Controlled Trial” OR “RCT”.

2. Steps of Meta-Analysis
Meta analysis was carried out in 5 steps as follows:
1) Formulate research questions in PICO (Population, Intervention, Comparison and Outcome).
2) Searching for articles from various databases including Google Scholar and PubMed.
3) Screening and conducting assessments in primary studies.
4) Perform data extraction and enter effect estimates from each primary study into the RevMan 5.3 application.
5) Interpret the results of the research analysis and draw conclusions.

3. Inclusion Criteria
The articles included in this study are full paper articles with a Randomized Controlled Trial (RCT) study design, the relationship size used is the mean standard deviation, in Indonesian and English. The intervention given is speech therapy, the subject of research is people with a diagnosis of Parkinson's disease.

4. Exclusion Criteria
The articles published in this study were articles that had been meta-analyzed. Research with non-randomized controlled trial (RCT) studies, and does not include the mean standard deviation.

5. Operational Definition of Variables
Speech therapy intervention is a professional health service in the field of voice;
Phonation is the process of speaking when the vocal cords in the throat vibrate and produce sound.

6. Study Instruments
The instrument used in this study was a critical appraisal tool randomized controlled trial (RCT).

7. Data Analysis
Data processing was carried out by the Review Manager (RevMan 5.3) by calculating the effect size and heterogeneity to determine the combined research model and form the final meta-analysis results.

RESULTS
Figure 1. The process of searching for articles by searching through the journal database which includes: PubMed, ScienceDirect and Google Scholar. A total of 7 articles were reviewed in this study.
Figure 2 shows the area where the articles were taken according to the criteria. Articles obtained from 2 continents namely America and Europe. As well as from 3 countries namely the United States, North America, and Austria.

Table 1 shows the assessment of the quality of primary articles from a randomized controlled trial (RCT) carried out using a checklist of critical appraisal tools randomized controlled trial (RCT) published by CEBM University of Oxford. Based on the answers from the article quality assessment, the highest total score was 12.

Articles identified through database search (n=815)

Articles after duplicates were removed (n =37)

Filtered articles (n=778)

Full Text articles that are considered eligible(n=22)

Articles included in the meta-analysis synthesis (n= 7)

Issued articles (n = 756)

- Irrelevant title = 734
- Not full text = 13
- Not English and Indonesian = 9

Complete articles issued with reasons (n = 13)

- Unsuitable outcomes = 4
- Inappropriate intervention = 5
- Unsuitable outcomes = 4

Figure 1. PRISMA flowchart diagram of Speech Therapy on Phonation Improvement in People Diagnosed with Parkinsons Disease

Figure 2. Map of the distribution of research of Speech Therapy on Phonation Improvement in People Diagnosed with Parkinsons Disease
Tabel 1. Critical appraisal checklist for randomized controlled trial dari critical appraisal skills programme (CASP)

<table>
<thead>
<tr>
<th>Author (Years)</th>
<th>Criteria of Questions</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Spielman et al (2018)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Halpern et al (2012)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fox et al (2001)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sapir et al (2001)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>O’Brien et al (1996)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ramig et al (1995)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Johnson and Pring (1990)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Description of the question criteria:

1 = Does the research address a clearly focused statement or problem?
2 = Are the RCT research methods appropriate for answering the research questions?
3 = Were there enough subjects in the study to establish that the findings were not made by chance?
4 = Were subjects randomly allocated to the experimental and control groups? If not, could this introduce bias?
5 = Were inclusion or exclusion criteria used?
6 = Were the two groups comparable at study entry?
7 = Were objective and unbiased outcome criteria used?
8 = Were objective and validated measurement methods used to measure the results? If not, were the results assessed by someone who was not aware of the group assignment (i.e. was the assessment blinded)?
9 = Is the effect size practically relevant?
10 = How precise is the estimated effect? Are there confidence intervals?
11 = Could there be confounding factors that have not been taken into account?
12 = Are the results applicable to your research?

Description of the answer score:

1 = Yes
0 = No

Table 2. Table PICO summary of the article effectiveness of speech therapy on phonation improvement in people diagnosed with parkinsons disease

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Country</th>
<th>Sample</th>
<th>P</th>
<th>I</th>
<th>C</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spielman et al. (2018).</td>
<td>USA</td>
<td>Intervention: 22 People with a diagnosis of Parkinson's disease</td>
<td>Speech therapy intervention using the LSVT LOUD and LSVT ARTIC methods</td>
<td>No speech therapy intervention was given using the LSVT LOUD and LSVT ARTIC methods</td>
<td>Phonation repair</td>
<td></td>
</tr>
<tr>
<td>Halpern et al. (2012).</td>
<td>USA</td>
<td>Intervention: 8 People with a diagnosis of Parkinson's disease</td>
<td>Speech therapy intervention using the LSVT method</td>
<td>Not given speech therapy intervention with the method</td>
<td>Phonation repair</td>
<td></td>
</tr>
</tbody>
</table>

www.theijmed.com
Table 3. Effect estimates (Mean SD) from the primary studies included in the meta-analysis

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Country</th>
<th>Sample</th>
<th>P</th>
<th>I</th>
<th>C</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sapir et al. (2001).</td>
<td>North America</td>
<td>Intervention: 21 Control: 12</td>
<td>People with a diagnosis of Parkinson's disease</td>
<td>Speech therapy intervention using the LSVT method on vocal loudness [sound pressure level (SPL)]</td>
<td>LSVT</td>
<td>Phonation repair</td>
</tr>
<tr>
<td>Fox et al. (2001).</td>
<td>USA</td>
<td>Intervention: 13 Control: 15</td>
<td>People with a diagnosis of Parkinson's disease</td>
<td>Speech therapy intervention using the LSVT method</td>
<td>No speech therapy intervention was given using the LSVT method on vocal loudness [sound pressure level (SPL)]</td>
<td>No speech therapy intervention was given with the LSVT method</td>
</tr>
<tr>
<td>O'Brien et al. (1996).</td>
<td>USA</td>
<td>Intervention: 22 Control: 13</td>
<td>People with a diagnosis of Parkinson's disease</td>
<td>Speech therapy intervention using the LSVT method</td>
<td>No speech therapy intervention was given with the LSVT method</td>
<td>No speech therapy intervention was given using the LSVT method</td>
</tr>
<tr>
<td>Ramig et al. (1995).</td>
<td>USA</td>
<td>Intervention: 26 Control: 19</td>
<td>People with a diagnosis of Parkinson's disease</td>
<td>Speech therapy intervention using the LSVT respiration (R) or voice and respiration method</td>
<td>No speech therapy intervention was given with the LSVT method</td>
<td>No speech therapy intervention was given using the LSVT respiration (R) or voice and respiration method</td>
</tr>
<tr>
<td>Johnson and Pring. (1990).</td>
<td>Austria</td>
<td>Intervention: 6 Control: 6</td>
<td>People with a diagnosis of Parkinson's disease</td>
<td>Speech therapy intervention using the LSVT method</td>
<td>No speech therapy intervention was given using the LSVT respiration (R) or voice and respiration method</td>
<td>No speech therapy intervention was given using the LSVT method</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Speech Therapy</th>
<th>Non-Speech Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Fox et al (2001)</td>
<td>82.4</td>
<td>3.9</td>
</tr>
<tr>
<td>Halpern et al (2012)</td>
<td>85.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Johnson and Pring (1990)</td>
<td>100.2</td>
<td>10.9</td>
</tr>
<tr>
<td>Ramig et al (1995)</td>
<td>81.2</td>
<td>4.65</td>
</tr>
<tr>
<td>Sapir et al (2001)</td>
<td>82.36</td>
<td>3.92</td>
</tr>
<tr>
<td>Spielman et al (2018)</td>
<td>84.3</td>
<td>4.95</td>
</tr>
</tbody>
</table>
1. Forest Plot

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Intervention TW</th>
<th>Non Intervention TW</th>
<th>Std. Mean Difference</th>
<th>Std. Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>Fo et al (2001)</td>
<td>82.4</td>
<td>3.3</td>
<td>13</td>
<td>70.5</td>
</tr>
<tr>
<td>Haipen et al (2013)</td>
<td>8.5</td>
<td>2.4</td>
<td>8</td>
<td>70.4</td>
</tr>
<tr>
<td>Johnson and Price (1960)</td>
<td>100.2</td>
<td>10.2</td>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>Olwin et al (1966)</td>
<td>42.47</td>
<td>3.61</td>
<td>22</td>
<td>67.83</td>
</tr>
<tr>
<td>Rong et al (1995)</td>
<td>81.2</td>
<td>4.55</td>
<td>20</td>
<td>68.61</td>
</tr>
<tr>
<td>Supply et al (2001)</td>
<td>62.26</td>
<td>3.02</td>
<td>21</td>
<td>68.69</td>
</tr>
<tr>
<td>Spielman et al (2013)</td>
<td>84.3</td>
<td>4.85</td>
<td>22</td>
<td>70.1</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>118</td>
<td>100.0%</td>
<td>95</td>
<td>95</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.65; Chi² = 20.42, df = 6 (P = 0.002); I² = 71%
Test for overall effect: Z = 6.93 (P < 0.0001)

Based on the results of the forest plot in Figure 3, it shows that the effect of speech therapy intervention on phonation improvement in people with a diagnosis of Parkinson's disease is 2.52 units and is statistically significant (Standardized Mean Difference = 2.52; 95% CI 1.79 to 3.24; p < 0.001). High heterogeneity of effects (I² = 71%; p = 0.002). So that the distribution of data is stated to be heterogeneous (random effect model).

2. Funnel Plot

The funnel plot in Figure 4 shows the distribution of effect estimates between studies with a standard error of less than 0.5, which is more to the right than to the left of the vertical line of the average effect estimate. So it was identified that there was publication bias.
DISCUSSION

Speech therapy is a form of professional health services based on science and technology in the fields of language, speech, sound, rhythm/fluency (communication), and swallowing aimed at individuals, families and/or groups to improve health efforts caused by disturbances/anatomical, physiological, psychological and sociological abnormalities (Permenkes RI, 2014). The goal of speech therapy services is to optimize the individual’s ability to communicate and swallow, thereby improving the quality of life (American Speech-Language-Hearing Association, 2016).

Parkinson’s disease (PD) is a complex progressive neurodegenerative disease with characteristic motor symptoms such as tremor at rest, muscle and joint stiffness, slowness of movement and speech and postural instability (Kouli et al., 2018).

Currently, the diagnosis is based on clinical symptoms with diagnostic criteria requiring the presence of two of the following clinical features: tremor at rest, rigidity of muscles and joints (rigidity), slowness of movement and speech (bradykinesia) and postural instability (Kouli et al., 2018).

Speech therapy presents a variety of therapeutic methods to improve communication in PD patients. One method in the treatment of voice disorders in PD is known as the Lee Silverman Voice Treatment (LSVT). LSVT is one of the treatments for speech disorders associated with PD. LSVT is specifically designed to address voice and speech disorders due to PD (Mahler, 2015). The goal of this method focuses on improving vocal loudness as well as one of the most widely used speech interventions in hypokinetic dysarthria associated with PD (Pu et al., 2021).

Phonation is the term used for the process by which sound occurs. Phonation refers to the result of vocal cord vibrations. Conditions that need to be met to produce phonation include the vocal cords having to adduct and exhale to produce pressure on the larynx (Dashtipour et al., 2018).

This systematic review and meta-analysis research raises the theme of the effectiveness of speech therapy interventions in people with a diagnosis of Parkinson’s disease, especially in terms of phonation improvement. This study discusses data on speech therapy interventions considered important because of their scarcity. The number of relevant research published and accessible is still small and also has data access problems (data duplication) (Murti, 2018).

The combined estimate of the effect of speech therapy intervention on phonation was processed using RevMan 5.3 with the continuous method. This method is used to analyze the effect size or standardized mean difference in bivariate data from two groups that have been controlled for confounding factors by randomization.

The results of systematic reviews and meta-analyses are presented in the form of forest plots and funnel plots. Forest plots provide an overview of the information from each study included in the meta-analysis, and estimates of the overall results (Murti, 2018). Forest plots show visually the large variation (heterogeneity) between study results (Murti, 2018).

Systematic review and meta-analysis in this study were conducted with the aim of increasing the generalizability of the findings and obtaining convincing conclusions from the results of various similar studies regarding the effectiveness of speech therapy interventions for phonation improvement in people with a diagnosis of Parkinson’s disease based on statistical results (Standardized Mean Difference 2.52; CI 71% 1.79 to 3.24; p<0.001).
This research is supported by Choi (2011) showing the results of the LSVT program have been shown to produce consistent improvements in vocal loudness in PD-related voice disorders.

The overall effect on speech therapy intervention during phonation training was 6.07 dB (95% CI 0.10 to 12.24; p<0.001; REM, I2=90%). Xu’s study (2020) showed that only participants who underwent LSVT training experienced significant improvements in vocal intensity. The frequency of exercise is 4 times a week for 4 weeks, sixteen training sessions a month and carried out for a minimum of 2 years.

AUTHORS CONTRIBUTION
Anita is the principal researcher who selects topics, tracks and collects research data. Hanung Prasetya and Bhisma Murti played a role in analyzing the data and reviewing research documents.

FUNDING AND SPONSORSHIP
This study is self-funded.

ACKNOWLEDGMENT
We are grateful to the database providers PubMed, Google Scholar and Springer Link.

CONFLICT OF INTEREST
There is no conflict of interest in this study.

REFERENCES

